cov¶
- numeric.stats.cov(m, y=None, rowvar=True, bias=False)¶
Estimate a covariance matrix.
- Parameters:
m – (array_like) A 1-D or 2-D array containing multiple variables and observations.
y – (array_like) Optional. An additional set of variables and observations. y has the same form as that of m.
rowvar – (boolean) If
rowvar
is True (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations.bias – (boolean) Default normalization (False) is by (N - 1), where N is the number of observations given (unbiased estimate). If bias is True, then normalization is by N.
- Returns:
Covariance.
Examples:
from mipylib.numeric import stats x1 = [12, 2, 1, 12, 2] x2 = [1, 4, 7, 1, 0] c = stats.cov(x1, x2) print c x = array([[0, 2], [1, 1], [2, 0]]).T print stats.cov(x) x = array([[12, 2, 1, 12, 2], [1, 4, 7, 1, 0]]) print stats.cov(x) print stats.cov(x, x)
Result:
>>> run script... array([[32.2, -9.1] [-9.1, 8.3]]) array([[1.0, -1.0] [-1.0, 1.0]]) array([[32.2, -9.1] [-9.1, 8.3]]) array([[32.2, -9.1, 32.2, -9.1] [-9.1, 8.3, -9.1, 8.300000000000002] [32.2, -9.1, 32.2, -9.1] [-9.1, 8.300000000000002, -9.1, 8.3]])